Internal ¹³CO structures within molecular clouds

Lixia Yuan, Ji Yang Purple Mountain Observatory, Chinese Academy of Sciences; Ixyuan@pmo.ac.cn

Aims: to characterize the internal 13CO structures within 12CO molecular clouds (MCs) by their gas fractions, spatial distribution, and relative motions.

Samples: 2851 MCs identified from the MWISP CO survey crossing I= (105° 150°) & |b| < 5.25° & V_{LSR}=(-95 25) km s⁻¹; Near group in (-30 25) km s⁻¹ ~ 0.5 kpc, Far group in (-95 -30) km s⁻¹ ~ 2 kpc; ¹²CO lines (RMS ~0.5K@0.2km s⁻¹) & ¹³CO lines (RMS ~0.3K@0.2 km s⁻¹)

(1) Denser molecular structures traced: Internal ¹³CO structures: (3) Relative velocity dispersions between

by ¹³CO lines (Yuan & Yang et al. 2022, ApJS, 261:37)

Fig1: R-values is the Spearman's correlation coefficient. The colors on the dots represent the distribution of 2D-PD

(2) A preferred separation between

13CO structures (Yuan & Yang et al. 2023a, ApJ, 944:91)

Fig2 : The colors on the dots represent the distribution of 2D-PDF.

(1) Their overall emission areas generally do not exceed 70% of MC's ¹²CO emission areas.

(2) Regularly spaced and has a preferred separation.

(3) Their relative velocity dispersions are the main form to store the kinetic energy of MCs

(4) Their relative motions are random.

13CO structu 'es (Yuan & Yang et al 2023b, ApJ, 958:7)

 $\sigma_{2co,tot}^{2}$ (km² s⁻²) $\sigma_{2co,tot}^{2}$ (km² s⁻²

The colors on the dots represent the distribution of 2D-PDF.

(4) Relative velocities between ¹³CO

structures (Yuan & Yang et al. 2024, AJ, 167:207)

Fig4 : Velocity fields of MCs with double ¹³CO structures