The Mopra CO Galactic Plane Survey

Nick Tothill, Western Sydney University

G Wong, C Braiding, N Maxted, M Burton, G Rowells, B Idermuehle, M Filipovic, M Freeman, R Blackwell, F Voisin, C Snoswell, ...

UNSW, WSU, U Adelaide, Armagh Observatory, CSIRO
Synopsis

- CO Survey of the southern Galactic plane
 - i.e. the parts invisible from northern telescopes
 - Range in b: -1 to +1
 - Range in l: 260 – 10 (110 deg)
 - 220 Square degrees
- All 4 isotopomers: 12CO, 13CO, C18O, C17O
 - Simultaneous observations
- Resolution: 0.5 arcmin, ~0.1 km/s
- > 3Mpix, each with many spectral data points
Purpose

• Mapping the Milky Way Galaxy in Molecular Gas at subarcminute resolution
• CO is the basic tracer of dense gas
 – Easily thermalised (>~1000 cm⁻³)
 – Energy levels fit ISM temperatures well; even cool gas has CO up to J=4
• Complementary to ASKAP
 – HI/continuum
 – Good extended source sensitivity
• Complementary to Cherenkov Telescope Array, CTA
 – High-energy Gamma-rays
 – Trace the interaction of cosmic rays with protons
• Complementary to moderate-size THz telescope
 – >1 m aperture at C+ 1.9 THz (e.g. DATE5!)
 – 5m aperture at CI 0.5 THz (e.g. NANTEN2, DATE5)
 – Maps of most major cooling lines of the Milky Way Galaxy at high resolution
Mopra Telescope

22m single dish
1 – 115 GHz
Spectroscopy and VLBI
AUD405k pa (direct)
Fire resistant!
Observing Techniques

- Fast on-the-fly (FOTF)
 - Uses 256ms pulsar mode to yield fast integration times, and hence fast scanning speeds

- Fully-remote observations
 - Observing from your phone!*
 - VNC, queue mode
 - TOAD

*full observations from a phone are non-trivial
Science – Find the Protons!

• Combine molecular (CO), atomic (HI) and ionic (C+, N+) tracers

• Trace all states of the baryonic ISM
 – Gamma rays trace the interactions of cosmic rays with protons
 – Understanding the structure of the ISM allows the physics of cosmic rays to be understood.
 – Understanding the interaction of cosmic rays with the ISM is a major requirement to understand Galaxies.

• Major focus: Map the ISM around SNRs
Dark molecular gas

• Molecular gas (H2) without CO
 – Too little CO for self-shielding
 – So the carbon should be atomic (CI)

• Compare CO/CI/HI maps

• Preliminary work with Mopra/HEAT/SGPS suggests that ~1/3 of molecular gas is CO-dark (Burton et al 2015)
Galactic Objects

• Distance estimates
 – Circinus X-1 at 9kpc (Heinz et al 2015)

• Molecular Clouds and Star Formation
 – Carina (Rebolledo et al 2016)
 – Chamaeleon (G Wong PhD thesis, Wong et al in prep)

• The Galactic Centre
 – Ground state CO
 – dynamics
Data products

- Raw data available on ATOA under normal rules
- Processed data public (on ATOA et al)
 - DR 1 pilot survey 11.5 sq deg (Braiding et al 2015)
 - DR 2 Carina (Rebolledo et al 2016)
 - DR 3 in prep (Braiding et al)
Progress and Prospects
Progress and Prospects

- We have applied for further funding for next winter
 - Completion of survey
 - Expansion of coverage
 - 7mm mapping (eg CS, SiO)
 - Mass tracers for CTA
 - 3mm transitions (eg ions)
 - Tracing eg cosmic ray ionisation
 - Cosmic ray physics
 - ISM physics
The Mopra Survey in Context

- Major Galactic Plane CO Surveys
 - PMO (N)
 - Nobeyama 45m (N)
 - FCRAO (old!)
 - CfA, NANTEN (low res, N/S)
 - Only S surveys can be combined with THz
- Very small-scale SKA Pathfinder*
- Very low energy gamma-ray telescope
- Low latitude, low elevation, low frequency Antarctic terahertz telescope

*Not an official SKA pathfinder!